

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 1

Report on Security Assessment

of Smart Contracts for Tacans Labs

Version 1.0

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 2

Audit overview

Veax is a decentralized exchange (DEX) that operates on the NEAR Protocol. It is designed to provide an

advanced trading experience that combines the best features of traditional centralized exchanges (TradeFi)

and decentralized exchanges (DeFi). As a single-sided liquidity DEX, Veax allows traders to provide liquidity

to the exchange using a single token. The platform also incorporates advanced features such as adaptable

exchange pools with smart routing, concentrated liquidity, and dynamic fee levels that guarantee the best

swap price for traders. Veax is built on NEAR Protocol, which is a blockchain platform designed to provide a

scalable and secure infrastructure for decentralized applications. By leveraging the NEAR Protocol, Veax can

offer fast transaction speeds and low fees, making it accessible to a wide range of traders.

At the request dated January 25, 2023, a security audit of Veax smart contracts was conducted.

The audit of a smart contract involved a comprehensive review and evaluation of its code and associated

processes to identify any vulnerabilities or weaknesses that could potentially compromise the security,

functionality, or performance of the contract. The purpose of the audit was to ensure that the smart contract

operates as intended, meets the specified requirements, and complies with industry standards and best

practices.

As a result of the audit, it was established that an attacker could not abuse the smart contract or violate

business requirements. A few low-level issues and some informational issues were identified during our

assessment, and we are pleased to report that the developers have been very responsive and have taken

appropriate measures to further improve the security level of the protocol. Additionally, we provided

recommendations for improving certain mechanics of the project, which the developers have taken into

account.

The Veax smart contract was found to be of high quality and meets industry standards and best practices. Its

design and implementation demonstrate a strong commitment to security and reliability, and the audit

results provide confidence in the contract's ability to operate as intended.

Diagram of the findings

0

Critical

0

High

0

Medium

6

Low

4

Informational

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 3

ID Findings Risk level Status

F-1 Payable API state Low Fixed

F-2 Contract suspension check missing Low Fixed

F-3 Contract suspension check missing Low Fixed

F-4 Contract suspension check missing Low Fixed

F-5 Unnecessary check Low Fixed

F-6 Unnecessary check Low Fixed

F-7 Possible occurrence of an unwanted event Informational Noted

F-8 Missing cargo overflow checks Informational Fixed

F-9 Elastic supply problem Informational Noted

F-10 Unnecessary storage of data on-chain Informational Noted

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 4

Table of contents
1. Introduction 6

2. What is a Smart Contract Audit 6

3. Disclaimer 7

4. Audit Summary 7

5. Recommendations 8

6. Methodology 8

7. Project Scope 10

8. The Severity Level of the Issues 15

9. Findings and Risk Levels 16

10. Diagram of the Findings 16

10.1 CVSSV3 Score 17

11. Results from Manual Analysis 18

11.1 F-1 Payable API State 18

11.1.1 Improvement Recommendation 18

11.2 F-2 Contract Suspension Check Missing 19

11.2.1 Improvement Recommendation 20

11.3 F-3 Contract Suspension Check Missing 20

11.3.1 Improvement Recommendation 21

11.4 F-4 Contract Suspension Check Missing 21

11.4.1 Improvement Recommendation 22

11.5 F-5 Unnecessary Check 22

11.5.1 Improvement Recommendation 23

11.6 F-6 Unnecessary Check 23

11.6.1 Improvement Recommendation 24

11.7 F-7 Possible Occurrence of an Unwanted Event 24

11.7.1 Improvement Recommendation 25

11.8 F-8 Missing Cargo Overflow Checks 25

11.8.1 Improvement Recommendation 26

11.9 F-9 Elastic Supply Problem 26

11.10 F-10 Unnecessary Storage of Data On-chain 26

12. Results from Semi-Automatic Scans 27

12.1 Rustle 27

12.2 RustSec: Cargo Audit 29

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 5

12.3 Fuzzing Results 30

13. Conclusion 32

Appendix/Test Functions 33

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 6

1. Introduction

By request of Tacans Labs (Customer, Company), and according to Purchase Order dated 25 Jan 2023, H-X

Technologies (H-X, Provider or pen testers) has delivered the professional information security services,

namely, security assessment of the Customer’s smart contracts (target object).

After reviewing the implementation of Veax’s smart contracts, this audit report has been prepared to

discover potential issues and vulnerabilities in their source code. We have outlined our approach to evaluate

the potential security risks. Advice on how to improve security and performance has also been given in the

report.

Veax is a decentralized exchange (DEX) that operates on the NEAR Protocol. It is designed to provide an

advanced trading experience that combines the best features of traditional centralized exchanges (TradeFi)

and decentralized exchanges (DeFi).

As a single-sided liquidity DEX, Veax allows traders to provide liquidity to the exchange using a single token.

This means that traders can easily add liquidity to the platform without having to provide both tokens in a

trading pair.

Veax is built on NEAR Protocol, which is a blockchain platform designed to provide a scalable and secure

infrastructure for decentralized applications. By leveraging the NEAR Protocol, Veax can offer fast transaction

speeds and low fees, making it accessible to a wide range of traders.

The platform also incorporates advanced features such as adaptable exchange pools with smart routing,

concentrated liquidity, and dynamic fee levels that guarantee the best swap price for traders. This provides

traders with greater control over their trades and helps to mitigate risks.

Overall, Veax aims to provide a user-friendly and seamless trading experience that combines the best aspects

of both TradeFi and DeFi. By doing so, it hopes to become a leading platform for decentralized trading on the

NEAR Protocol.

2. What is a Smart Contract Audit
Smart contracts for Near are self-executing digital programs that run on the Near blockchain. They allow

developers to create and deploy decentralized applications (dApps) that can perform a variety of functions,

such as managing digital assets, running automated transactions, enforcing rules, and more.

Smart contracts for Near are written in Rust programming language, which is known for its security and

performance. The smart contracts run on the Near Virtual Machine (VM), which is a lightweight and efficient

execution environment designed for the fast and secure execution of smart contracts.

Writing smart contracts is a relatively new field, without many security standards, documentation, or best

practices. It is also the ultimate test of defensive software engineering. Smart contracts can end up

controlling tens of millions of dollars, making them a target for attackers.

Audit of Smart Contracts is focused on finding logic flaws and security vulnerabilities, especially, which could

let an attacker misuse the Smart Contract, violate the customer's business requirements, or cause any other

harm to the customer or its clients or partners. The goal of the audit is to model and verify the target object

compromise, sensitive information theft, weak conditions, or other ways or prerequisites for the realization

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 7

of fraud or security incidents. To achieve this goal, tools and techniques very similar to those that an attacker

would use are typically required.

3. Disclaimer
This audit report is solely intended to assess the security and functionality of the smart contract for the

decentralized exchange project on the Near blockchain. It is not intended to provide investment advice or

personal recommendations, nor does it take into account any potential economic implications of tokens,

token sales, or other assets. Under no circumstances should any entity rely on this report to make investment

decisions, buy or sell any tokens, products, services, or other assets.

It should be noted that this audit report does not endorse any particular project or team, nor does it

guarantee the security of the project. The evaluation result does not ensure the absence of any further

security issues, as a single audit cannot be comprehensive. Therefore, it is highly recommended that the

project undergoes additional independent audits and a public bug bounty program to ensure the security of

smart contracts.

Furthermore, this audit report is subject to certain limitations, including but not limited to the fact that the

evaluation is based on the information provided by the project team, and no independent verification of the

information was conducted. Additionally, the audit is limited to the specific smart contract codebase

reviewed and does not cover any associated web or mobile applications or third-party integrations. Any

changes to the smart contract codebase after the completion of the audit are not covered by this report.

Finally, this audit report does not provide any warranties regarding the discovery of all security issues of the

smart contract.

4. Audit Summary
According to the assessment, the Customer's smart contracts are well protected. According to the Tarpaulin

code coverage reporting tool, the code is 77% covered, but it does not cover the integration tests used in the

project. Given this, the actual coverage percentage could be much higher. The following is an overview of the

project, containing the scope of the security review. It then provides an overall summary of the audit findings,

followed by a detailed review of the vulnerabilities found, with each vulnerability given a severity rating

(critical, high, medium, or low) and a possible solution. Conclusions that are not directly related to security

are marked as informational. Based on the findings, we recommend resolving all low, medium, and high

findings, and further reviewing the information level findings. This will help ensure confidentiality, integrity,

and availability.

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 8

During the audit process, each vulnerability is also assigned a status:

• Open: the issue has not been presented to the project development team;

• Fixed: the issue has been fixed;

• Noted: the issue has been acknowledged by the project team, but no further action has been taken

because a compelling case has been made.

5. Recommendations
Auditors recommend mitigating all the vulnerabilities described in this report. It is also highly recommended

to complete all todo!, FIXME, and TODO statements.

The nature of information threats involves the uncertainty of penetration paths that may be used by an

attacker. In addition, the set of known technical vulnerabilities in libraries, components, and hosting

environments is constantly increasing. Therefore, the results of this audit cannot guarantee to uncover all

possible compromise or penetration ways and security problems and only show the weakest points in the

security of the target object.

Besides smart contract audits, to enhance the customer’s security effectively and to reduce the customer’s

business risks, other appropriate security management processes and security solutions should be designed

and implemented. These security measures include but are not limited to the following: a secure

development lifecycle, regular security audits by an independent party, security event monitoring, and

incident response.

Using internationally recognized standards and best practices such as ISO 27000, PCI DSS, and NIST is

recommended. We can help in the implementation of these processes and solutions.

6. Methodology
To evaluate the potential vulnerabilities or issues, we go through a checklist of well-known smart contract-

related security issues, using automatic verification tools and manual review. We test some discovered issues

on our local network to reproduce the issue and prove our findings.

In this audit, we considered the following important features of the code.

Common issues:

• Behavior flow management—evaluation of possible scenarios of unexpected or undesirable

behavior:

o Front running

o Reentrancy

o Cross contact calls:

▪ Exploitable state between the call and the callback

▪ Rollback any changes to the state in the callback if the external call failed

▪ Fefund

o Transactions or events order dependencies

o Assert violation

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 9

o Unnecessary checks

o Unexpected balance

• Access control—presence of an access control check for privileged actions:

o Public methods or variables that should be private

o Unencrypted private data on-chain

o Make sure it's the call made by a user

o Overview of administrative roles and trust model

• Improper initialization of the smart contract:

o No validation of passed arguments

• Denial of service:

o Storage staking (NEAR uses storage staking which means that a contract account must have

sufficient balance to cover all storage added over time.)

o Insufficient balance to withdraw or transfer tokens

• Unused code:

o Code with no effects

o Unused variables

o Unused functions

• Typographical issues:

o Misspelling

• Requirement violation

• Arithmetic issues

• Cryptographic issues

• Weak randomness

• Shadowing variables

• Centralization related issues

• Secure oracles usage

Additional:

• Issues caused by the token smart contracts and their operators themselves:

o Fee on transfer tokens

o Changing the balance of tokens (token supply manipulation)

However, these issues can interfere with the proper operation of a DEX.

• Check the correct operation of the tokens stored by the smart contract that belong to users

• Possibility of obtaining more tokens than expected

• Incorrect commission (fee) calculation

• Ability to drain or steal funds from the pool

• Arithmetic

• Carefully checking the implementation to make sure that functions and methods return correct or

expected results or report an error or return if incorrect.

o Correctness

o Rounding

o Type-safe casts

o Swap math

o Liquidity math

o Fee math

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 10

Cargo issues:

• Vulnerable dependencies

• Dependency versions

• Profile settings:

o Overflow-checks

o Optimization

Automated analysis:

• Scanning the project's codebase with Rustle and others.

• Manual check of all problems found by the tools.

After reviewing the documentation and any available tests, the smart contract undergoes testing and fuzzing

to verify its functionality. Fuzzing is a technique used in software testing that involves providing invalid,

unexpected, or random inputs to a program to observe its behavior and identify any vulnerabilities or bugs.

In the context of smart contracts for the Near blockchain, fuzzing can be used to test the contract's resilience

to unexpected or malicious inputs.

Fuzzing involves creating an automated testing framework that generates random or unexpected inputs to a

smart contract and monitors its behavior. The goal is to find any edge cases, invalid inputs, or unexpected

behavior that could lead to security vulnerabilities or bugs.

By testing smart contracts with fuzzing techniques, developers can identify and fix any potential issues before

deploying the contract to the blockchain. This can help prevent attacks and ensure the proper functioning of

the contract once it is live.

7. Project Scope
The scope of the project is a smart contract for a decentralized exchange written in the Rust programming

language for the Near blockchain. The project allows users to trade, provide liquidity, and earn rewards.

Currently supports deposits, withdrawals, and exchanges in NEP-141 tokens.

Here is an overview of the features available to different actors:

Function User Role Tested

view metadata User True

get_deposits User True

get_deposit User True

get_verified_tokens User, Owner True

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 11

get_user_tokens User True

get_pool_info User True

get_user_storage_state User True

get_version User True

get_owner User True

get_position_info User True

storage_deposit User True

storage_withdraw User True

storage_unregister User True

storage_balance_bounds User True

storage_balance_of User True

extend_verified_tokens Owner True

remove_verified_tokens Owner True

extend_guard_accounts Owner True

remove_guard_accounts Owner True

set_protocol_fee_fraction Owner True

suspend_payable_api Owner, Guard, Liquidity Provider True

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 12

resume_payable_api Owner, Guard, Liquidity Provider True

open_position Liquidity Provider True

withdraw_fee Liquidity Provider True

close_position Liquidity Provider True

exact-in swap Trader True

exact-out swap Trader True

Note: The audit report only covers certain modules in the repository and not all of them. Specifically, the

audit report only includes the contract located in the veax/dex/src folder. To be more specific, the

audit report focuses on the following files:

./

File keccak256

lib.rs ee3ce39365784ede353ac48e47f83e78164b525dd8417f105c3c6e01359f088c

./chain

File keccak256

account.rs 5f2a02689219862a1467eee67191fbd3f846910c092faac045e947eb7aa601cb

mod.rs 8b0f11cb5aa5af76aab15526719be25ee5fbcadeb71f725a7ddcea1728bf01d0

pairs.rs a5c2bbd3a058791c12e91863b78fabade145d891bf87fd8135e4106a03f70bfb

storage_key.rs 85a149458ac63859b0e926063d46471dea803630ae2b30b5908ed543f29e612f

types.rs e9c01544b8bfcf126740ed7a57907e7ad1e61d3a41f380d6423a7a65e9e19064

utils.rs 914ced279a992f0572d42b3bd51db6d2add15bc23f9918e95c5cd19b61abd271

wasm.rs 3a851cd5e3dcc68e7c2d1bc1080d8dab97f8d7e27de389e3e47f0f5b66677693

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 13

./chain/events

File keccak256

mod.rs deb428759867785dad83ff92d75659b30f8df0edaa35fb39c1e67493bbb3f3fc

tests.rs 136efffdd8d1d204a300386bc357787e6bd65a8189d5cf4626720e3c1602c215

./chain/log

File keccak256

mod.rs f317d636142f06eeecf3a2996d6a8f6325dae8dc08aa3f6b8bcd851b5f92ba0d

non_wasm.rs 840dc5e59970fa8cb8d9b08db4c919a0c8fe804cb6c4f8aa0752fb953d8d9663

wasm.rs 313671a93ba824e990c4937bec40df09d1d703e27ade986c98e022a996a5e3ad

./dex

File keccak256

dex_impl.rs b23acaa46e81eed6f99a2bd24ebae966f3526e3192fb10d40ef573c94bbb74b4

dex_tests.rs 8f2eceec1fd1f480c91035014af990764473b769bd61777809c3a296e660f6c3

errors.rs 0603a220b967b985057d3dcf91640c86c0971b24f3ffb65f4d5b1674c8f159b7

mod.rs ec81aa87c6eba64134b551f271ea42080d2662da3812e109758e122357882b43

primitives.rs 4020762da09d5c0f79ce017eeccf20903ad169b5c481812fae661b9fc2181f9e

state_types.rs afa326a777d3a68c8b18a0f48bc6c658669c0226cd562a7af9bf71490284ec82

test_utils.rs e301afabad6ab1ea7b1a90f5d1887f454af8b148d8fb823e7bbfd851f32a49ac

tick.rs bc9a784ea11dbb263ea94423809cc35e5712679ae89aab6d871cbbd7e09a4a21

tick_state_ex.rs 0c63df847913f9c77a9f0567f2488a9cfc94c71638c36f5328a4f327eefd9994

traits.rs da637e72a0796025409e0540a352528a6a9fa108caa3ae498f914ef20e02aa0a

utils.rs 8c5d2db7955a5af5d21f7e3887164045c6f8a3b8fb757a11675c70c707c94314

util_types.rs 57068743c398e404b75e93f197c8efd4895dcaf4c7b3e166aefe3e55b85b11fe

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 14

./dex/v0

File keccak256

account_state_ex.rs 51fb65f96a4f317b938c1679c4a74f90d0a899c9fbb556e8301e59f5b4d9f533

mod.rs 63e00845ca7e2896ce7d211479af9a6711bf05ce95d73244ed4fcaf6550752d7

pool_state_ex.rs 0bd654059fa8b2c8f0daa36bc834a381256a3a4d4c76059adbb959c1ed30c6e5

util_types.rs 050623c66ad6c3f22d8287ad378e339d1de9f41e884c65c2bcba76b262055b7d

./fp

File keccak256

display.rs e6b3370485f411ac72bcb73042b2d9ad40ce766c39b98efe5cb655540fcc1676

error.rs eac11376e0b8feccfb7592a222df1336640a316d6ae40b7b9f6a23eaf5af12ab

i128x128.rs 249bb47c56303ad820733458cb75039497892926916f728b43e020caa9587b6b

i192x192.rs 77edad3a99578a450596833ff34ec88f0812718ba38614bcb4d9bc8718bdc583

i192x64.rs 8937e999e35e90d751289db74c0b69a073fa70f270809d3867e189f1a4f8b7a8

i256x128.rs 2826039e6c01367a27510a689d6fc0e4408c8ffebb9d14d06ae8c080a139bc72

i320x64.rs 82e8c55e5448dcfe3519a63b019247733d5cca44502037c29d259e4661734689

mod.rs 6a4702536a63d9d7f815e3f2a7442e22bb8c98b62945d53391ba120c7ae5e7ee

signed.rs 2f4e21440ce30a6b06fb6c897a412203f1165cd09a2c5016a5033ee1270b4c86

traits.rs 82eebdf7a46ca7a73d1f9829d462bcd6363b295ade07266d07f32cb2d719ece4

try_float_to_ufp.rs ed24b8fa98d30009f7aefa6ad90ca3322542086edd1e7f6132acd4507789b78a

types.rs d02bb85571123584c3935822e07d79eafb99c570abdd1e7b9e063264fce2a665

u128x128.rs 528485cefc470eefd4da41569f463dc78f91a394966e7c30a2d07c48a57ee90c

u192x192.rs 64624cb48758cd68fe439dcd4668e9718d3aa126ee4d5820d5c58c9f920bf4a8

u192x64.rs c58802451c04237036ca91ba6ff94534dab6ce3aee331c299ac22270a4203699

u256x128.rs ef93387d354e90a3275a0e821864ef103da27297d26f232082310954184c4486

u256x256.rs 2b1dac90e4d76ad3a3e4a7fccb55e4ec3142618c8a79953869048d3cf4e783d8

u320x64.rs d4ffea2c3cf7190233b245953ed622d63200b74903e57357e440897e55f471e2

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 15

ufp_to_float.rs b959daa6ee3ea30898593a795cb6bbf47f4cf5f670a36ab3f16adf44bde280aa

unsigned_symmetric.rs a76223240f3d74921cf9364fa296ef0783912ec68644e34ad7fa50a120080844

Used dependencies:

• uint = { version = "0.9.3", default-features = false }

• serde = "1.0.138"

• serde_json = "1.0.82"

• thiserror = "1.0.31"

• near-sdk = { version = "=4.0.0" }

• near-contract-standards = { version = "=4.0.0" }

• itertools = "0.10.4"

• num-traits = "0.2.15"

• typed-index-collections = "3.1.0"

• bitvec = "1.0.1"

• paste = "1.0.9"

• strum = "0.24.1"

• strum_macros = "0.24.3"

• static_assertions = "1.1.0"

8. The Severity Level of the Issues

Severity Description

Critical
Issues that could result in an unlimited loss of funds or completely disrupt the contract's
workflow. Malicious code (including malicious modification of libraries) is also considered a
critical issue.

High
Issues that may lead to limited loss of funds, breach of user experience, or other contracts
under certain conditions. In addition, smart contract issues that allow a privileged account to
steal or block other users' funds.

Medium
Issues that do not lead to the loss of funds directly, but violate the logic of the contract. May
lead to contract failure or denial of service.

Low Issues that are not optimal coding, such as gas optimization hints, or unused variables.

Informational
Issues that do not affect the operation of the contract. Usually, information severity issues are
related to code best practices—for example, a style guide.

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 16

9. Findings and Risk Levels
In the table below you can find a list of issues found during manual code analysis.

ID Findings Risk level Status

F-1 Payable API state Low Fixed

F-2 Contract suspension check missing Low Fixed

F-3 Contract suspension check missing Low Fixed

F-4 Contract suspension check missing Low Fixed

F-5 Unnecessary check Low Fixed

F-6 Unnecessary check Low Fixed

F-7 Possible occurrence of an unwanted event Informational Noted

F-8 Missing cargo overflow checks Informational Fixed

F-9 Elastic supply problem Informational Noted

F-10 Unnecessary storage of data on-chain Informational Noted

10. Diagram of the Findings

Critical High Medium Low Informational

0 0 0 6 4

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 17

10.1 CVSSV3 Score

Vulnerability ID Vulnerability Description CVSS Score Severity

11.2 F-2 Contract suspension check missing 4.9 Low

11.3 F-3 Contract suspension check missing 4.2 Low

11.4 F-4 Contract suspension check missing 4.1 Low

11.5 F-7 Unnecessary check 2.2 Low

11.6 F-8 Unnecessary check 2.2 Low

11.7 F-9 Possible occurrence of an unwanted event 2.0 Informational

11.8 F-10 Missing cargo overflow checks 2.0 Informational

11.9 F-11 Elastic supply problem 0 Informational

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 18

11.10 F-12 Unnecessary storage of data on-chain 0 Informational

11. Results from Manual Analysis

11.1 F-1 Payable API State

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: There is no state check before changes to the suspend_payable_api and

resume_payable_api methods. This lets you repeatedly call the suspend or resume payable API

function, which can lead to the disruption of the project because an event is generated during the call.

Risk: Low

Location:

• ./veax/dex/src/dex/dex_impl.rs: 233-243

• ./veax/dex/src/dex/dex_impl.rs: 245-254

Code section:

impl<T: Types, S: StateMut<T>, SS: BorrowMut<S>> Dex<T, S, SS> {

...

pub fn suspend_payable_api(&mut self) -> Result<()> {

 self.ensure_caller_is_guard()?;

 let Contract::V0(ref mut contract) = self.contract_mut();

 contract.suspended = true;

 let caller_id = self.get_caller_id();

 self.logger_mut().log_suspend_payable_api_event(&caller_id);

 Ok(())

 }

 pub fn resume_payable_api(&mut self) -> Result<()> { // todo: check it

 self.ensure_caller_is_guard()?;

 let Contract::V0(ref mut contract) = self.contract_mut();

 contract.suspended = false;

 let caller_id = self.get_caller_id();

 self.logger_mut().log_resume_payable_api_event(&caller_id);

 Ok(())

 }

...

}

11.1.1 Improvement Recommendation

Implement a state check for the Payable API before assigning a new state to avoid re-raising the event.

Status: Fixed

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 19

Comment (developers): Fixed since version 1.0.11. Methods suspend_payable_api and

resume_payable_api are idempotent, and repeated execution doesn't cause unwanted smart contract

state changes. The only impact is doubling log occurrences that have an informational character.

Business impact: In the context of a smart contract on the NEAR blockchain, the impact of the possible

occurrence of an undesirable event can be significant for a business.

11.2 F-2 Contract Suspension Check Missing

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Risk: Low

Location: ./veax/dex/src/chain/wasm.rs: 397-448

Code section:

#[near_bindgen]

impl StorageManagement for State {

...

#[payable]

 fn storage_deposit(

 &mut self,

 account_id: Option<AccountId>,

 registration_only: Option<bool>,

) -> StorageBalance {

 let amount = env::attached_deposit();

 let account_id = account_id.unwrap_or_else(env::predecessor_account_id);

 let registration_only = registration_only.unwrap_or(false);

 let min_balance = self.storage_balance_bounds().min.0;

 let mut dex = self.as_dex_mut();

 let dex::StateMembersMut {

 contract: Contract::V0(ref mut contract),

 item_factory,

 ..

 } = dex.members_mut();

 contract

 .accounts

 .update_or_insert(

 &account_id,

 || item_factory.new_account(&account_id),

 |Account::V0(ref mut account), already_registered| {

 ensure_here!(

 amount >= min_balance || already_registered,

 Error::DepositLessThanMinStorage

);

 // Just add amount to account's NEAR balance

 if !registration_only {

 account.extra.near_amount += amount;

 return Ok(account.storage_balance_of());

 }

 // Registration only setups the account but doesn't leave

space for tokens.

 if already_registered {

 log_str("ERR_ACC_REGISTERED");

 if amount > 0 {

 Promise::new(env::predecessor_account_id()).transfer(amount);

 }

 return Ok(account.storage_balance_of());

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 20

 }

 // Supply min balance to account and refund rest

 account.extra.near_amount = min_balance;

 let refund = amount - min_balance;

 if refund > 0 {

 Promise::new(env::predecessor_account_id()).transfer(refund);

 }

 Ok(account.storage_balance_of())

 },

)

 .near_unwrap()

 }

...

}

11.2.1 Improvement Recommendation

Add the ensure_payable_api_resumed check to the storage_deposit method.

Status: Fixed

Comment (developers): Fixed since version 1.0.11. Initially, pausing of payable API was designed as a

safeguard only for DEX operations—swapping, opening, and closing positions. After internal discussion,

following the auditor’s recommendation, the team decided to change requirements and expand behavior on

other public methods that change smart contract state, including storage_deposit,

storage_withdraw, and storage_unregister.

Business impact: The absence of the ensure_payable_api_resumed check in the smart contract

when calling the storage_deposit method can break the business logic.

11.3 F-3 Contract Suspension Check Missing

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: Missing check when calling storage_withdraw method. The storage_withdraw

method refers to the payable API and the ensure_payable_api_resumed check is needed.

Risk: Low

Location: ./veax/dex/src/chain/wasm.rs: 451-472

Code section:

#[near_bindgen]

impl StorageManagement for State {

 #[payable]

 fn storage_withdraw(&mut self, amount: Option<U128>) -> StorageBalance {

 assert_one_yocto();

 let account_id = env::predecessor_account_id();

 let amount = amount.unwrap_or(U128(0)).0;

 let mut dex = self.as_dex_mut();

 let Contract::V0(ref mut contract) = dex.contract_mut();

 let (withdraw_amount, storage_balance) = contract

 .accounts

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 21

 .update(&account_id, |Account::V0(ref mut account)| {

 let available = account.storage_available();

 ensure_here!(available > 0, Error::NoStorageCanWithdraw);

 let withdraw_amount = if amount == 0 { available } else { amount };

 ensure_here!(withdraw_amount <= available,

Error::StorageWithdrawTooMuch);

 account.extra.near_amount -= withdraw_amount;

 Ok((withdraw_amount, account.storage_balance_of()))

 })

 .ok_or(dex::ErrorKind::AccountNotRegistered)

 .near_unwrap()

 .near_unwrap();

 Promise::new(account_id).transfer(withdraw_amount);

 storage_balance

 }

}

11.3.1 Improvement Recommendation

Add the ensure_payable_api_resumed check to the storage_withdraw method.

Status: Fixed

Comment (developers): Fixed since version 1.0.11. Initially, pausing of payable API was designed as a

safeguard only for DEX operations (swapping, opening, and closing positions). After internal discussion,

following the auditor's recommendation, the team decided to change requirements and expand behavior on

other public methods that change smart contract state, including storage_deposit,

storage_withdraw, and storage_unregister.

Business impact: The absence of the ensure_payable_api_resumed check in the smart contract

when calling the storage_withdraw method can break the business logic.

11.4 F-4 Contract Suspension Check Missing

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: Missing check when calling the storage_unregister method. The

storage_unregister method refers to the payable API, and the

ensure_payable_api_resumed check is needed.

Risk: Low

Location: ./veax/dex/src/chain/wasm.rs: 476-493

Code section:

#[near_bindgen]

impl StorageManagement for State {

...

#[allow(unused_variables)]

 #[payable]

 fn storage_unregister(&mut self, force: Option<bool>) -> bool {

 assert_one_yocto();

 let account_id = env::predecessor_account_id();

 let Contract::V0(ref mut contract) = &mut self.0;

 let account = match contract.accounts.get(&account_id) {

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 22

 None => return false,

 Some(Account::V0(account)) => account,

 };

 assert!(

 account.token_balances.is_empty(),

 "{}",

 dex::ErrorKind::TokensStorageNotEmpty

);

 let balance = account.extra.near_amount;

 contract.accounts.remove(&account_id);

 Promise::new(account_id).transfer(balance);

 true

 }

...

}

11.4.1 Improvement Recommendation

Add the ensure_payable_api_resumed check to the storage_unregister method.

Status: Fixed

Comment (developers): Fixed since version 1.0.11. Initially, pausing of payable API was designed as a

safeguard only for DEX operations—swapping, opening, and closing positions. After internal discussion,

following the auditor's recommendation, the team decided to change requirements and expand behavior on

other public methods that change smart contract state, including storage_deposit,

storage_withdraw, and storage_unregister.

Business impact: The absence of the ensure_payable_api_resumed check in the smart contract

when calling the storage_unregister method can break the business logic.

11.5 F-5 Unnecessary Check

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: The open_position_full method contains the ensure_payable_api_resumed

check and a call to the open_position method. In turn, the open_position method also contains

the ensure_payable_api_resumed check. There is no need to double-check.

Risk: Low

Location: ./veax/dex/src/dex/dex_impl.rs: 526-552

Code section:

impl<T: Types, S: StateMut<T>, SS: BorrowMut<S>> Dex<T, S, SS> {

...

pub fn open_position_full(

 &mut self,

 token_a: &TokenId,

 token_b: &TokenId,

 fee_rate: BasisPoints,

 amount_a: Amount,

 amount_b: Amount,

) -> Result<(PositionId, Amount, Amount, Liquidity)> {

 self.ensure_payable_api_resumed()?;

 self.open_position(

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 23

 token_a,

 token_b,

 fee_rate,

 PositionInit::FullRange {

 amount_ranges: (

 Range {

 min: Amount::one(),

 max: amount_a,

 },

 Range {

 min: Amount::one(),

 max: amount_b,

 },

),

 },

)

 }

...

}

11.5.1 Improvement Recommendation

Remove the call to the ensure_payable_api_resumed method from the open_position_full

method.

Status: Fixed

Comment (developers): Fixed since version 1.0.11. Unnecessary checks were removed.

Business impact: The presence of unnecessary double-checks in a smart contract on the NEAR blockchain
can lead to increased gas fees, longer execution times, and potential security risks, all of which can have a
negative impact on the success of a decentralized exchange and its associated business.

11.6 F-6 Unnecessary Check

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: The swap method contains the ensure_payable_api_resumed check, however the

swap method call only occurs in two methods (swap_exact_in, swap_exact_out) that also contain

the ensure_payable_api_resumed check before calling the swap method.

Risk: Low

Location: ./veax/dex/src/dex/dex_impl.rs: 786-809

Code section:

impl<T: Types, S: StateMut<T>, SS: BorrowMut<S>> Dex<T, S, SS> {

...

pub fn swap(

 &mut self,

 token_in: &TokenId,

 token_out: &TokenId,

 exact_in_or_out: Exact,

 amount: Amount,

) -> Result<Amount> {

 self.ensure_payable_api_resumed()?;

 let (pool_id, swapped) = PoolId::try_from_pair((token_in.clone(),

token_out.clone()))

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 24

 .map_err(|e| error_here!(e))?; // todo: avoid .clone()

 let direction = if swapped { Side::Right } else { Side::Left };

 let Contract::V0(ref mut contract) = self.contract_mut();

 let amount = contract

 .pools

 .update(&pool_id, |Pool::V0(ref mut pool)| {

 pool.swap(direction, exact_in_or_out, amount)

 })

 .ok_or(error_here!(ErrorKind::PoolNotRegistered))??;

 self.log_pool_state(&pool_id, PoolUpdateReason::Swap);

 Ok(amount)

 }

...

}

11.6.1 Improvement Recommendation

Remove the call to the ensure_payable_api_resumed method from the open_position_full

method.

Status: Fixed

Comment (developers): Fixed since version 1.0.11. Unnecessary checks were removed.

Business impact: The presence of unnecessary double-checks in a smart contract on the NEAR blockchain
can lead to increased gas fees, longer execution times, and potential security risks, all of which can have a
negative impact on the success of a decentralized exchange and its associated business.

11.7 F-7 Possible Occurrence of an Unwanted Event

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: The log_withdraw_event method is triggered before the send_tokens function is

called, which may fail. This can lead to an unwanted sequence of logs.

Risk: Informational

Location: ./veax/dex/src/dex/dex_impl.rs: 346-384

Code section:

impl<T: Types, S: StateMut<T>, SS: BorrowMut<S>> Dex<T, S, SS> {

...

pub fn withdraw(

 &mut self,

 account_id: &AccountId,

 token_id: &TokenId,

 amount: Amount,

 unregister: bool,

 extra: S::SendTokensExtraParam,

) -> Result<S::SendTokensResult> {

 self.ensure_payable_api_resumed()?;

 let Contract::V0(ref mut contract) = self.contract_mut();

 let (amount, balance) = contract

 .accounts

 .update(account_id, |Account::V0(ref mut account)| {

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 25

 let balance = account

 .token_balances

 .inspect(token_id, |balance| *balance)

 .ok_or(error_here!(ErrorKind::TokenNotRegistered))?;

 // get full amount if amount param is 0

 let amount = if amount == Amount::zero() {

 balance

 } else {

 amount

 };

 ensure_here!(amount > Amount::zero(), ErrorKind::IllegalWithdrawAmount);

 account.withdraw(token_id, amount)?;

 if unregister {

 account.unregister_token(token_id)?;

 }

 Ok((amount, balance - amount))

 })

 .ok_or(error_here!(ErrorKind::AccountNotRegistered))??;

 self.logger_mut()

 .log_withdraw_event(account_id, token_id, &amount, &balance);

 Ok(self.send_tokens(account_id, token_id, amount, extra))

 }

...

}

11.7.1 Improvement Recommendation

Perhaps you should call the log_withdraw_event method after the successful completion of the

send_tokens method.

Status: Noted

Comment (developers): Noted, won’t fix. Due to the asynchronous nature of Near cross-contract calls, it’s

impossible to guarantee consistency of withdraw event generated by the DEX smart contract and transferring

tokens to the user balance performed by a token smart contract. The user balance in DEX smart contract

decreasing before the method send_tokens of the token smart contract is called to prevent a double

spending attack. In case of tokens smart contract misbehaving or lack of gas, the callback execution cannot

be guaranteed. Deposit and withdraw events produced by DEX smart contract signal about increasing or

decreasing internal user balance on DEX itself. To ensure that tokens were actually transferred to the user

account, only events produced by tokens smart contracts should be used.

Business impact: In the context of a smart contract on the NEAR blockchain, the impact of the possible
occurrence of an undesirable event can be significant for a business.

11.8 F-8 Missing Cargo Overflow Checks

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: It was observed that there are no overflow-checks=true in Cargo.toml. By default,

overflow checks are disabled in optimized release builds. Hence, if there is an overflow in release builds, it

will be silenced, leading to unexpected behavior of an application.

Risk: Informational

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 26

Location: ./veax/dex/Cargo.toml

11.8.1 Improvement Recommendation

It is recommended to add overflow-checks=true under your release profile in Cargo.toml.

Status: Fixed

Comment (developers): Fixed since version 1.0.11. Most arithmetic operations executed by DEX smart

contract calculated on floating point or fixed point types, for which native 32- and 64-bit integer types are

building blocks and silent overflowing wrapped around at the boundary of the type is wanted behavior.

Nevertheless, after internal discussion, the team decided to enable overflow checks for release build to

improve code transparency and increase security guarantees of final builds.

Business impact: Overflow and underflow checks are important in Rust programming, particularly in smart
contract development on the NEAR blockchain. In the context of a smart contract, overflow and underflow
can occur when arithmetic operations are performed on numbers that are outside the valid range of the data
type being used. The impact of missing overflow checks in the Cargo.toml file can be significant for
businesses.

11.9 F-9 Elastic Supply Problem

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

Description: The potential issue with elastic supply tokens is that their price, supply, and user balances can

dynamically adjust. Examples of elastic supply tokens include inflation tokens, deflation tokens, and

rebasing tokens. However, the current implementation of the protocol does not support elastic supply

tokens. If the token being used is a deflation token, there could be a discrepancy between the recorded

amount of transferred tokens to the smart contract and the actual number of transferred tokens due to a

small number of tokens being burned by the token smart contract. This inconsistency can have security

implications for operations that rely on the transferred amount of tokens.

Risk: Informational

Status: Noted

Comment (developers): Noted, won’t fix. As most of the DEXes, VEAX doesn’t support inflation tokens,

deflation tokens, and rebasing tokens. Unfortunately, identification of such tokens is not specified in any

NEAR standard, so creation of pools with such tokens and performing swaps remains possible. However,

withdrawing such tokens from DEX will cause insufficient fund issues due to inconsistency of balance

representation. That inconsistency doesn’t have security implications rather then inability to withdraw

misbehaved token that we can’t prevent.

Business impact: An elastic token supply problem can have significant business impacts in a smart contract

on the NEAR blockchain.

11.10 F-10 Unnecessary Storage of Data On-chain

Commit: 40a784900bb14085625ac2902b436840606550fa

Branch: concentrated-liquidity

http://www.h-x.technology/
http://www.h-x.technology/
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa
https://gitlab.com/tacans_ext/veax/core/-/tree/40a784900bb14085625ac2902b436840606550fa

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 27

Description: The smart contract contains the logic for creating, extending, and removing verified tokens. In

the current implementation of a smart contract, storing a list of verified tokens on the blockchain is

potentially redundant. The problem with unnecessary storage of data that can be placed off-chain is that it

can lead to higher storage costs and slower performance.

To address this issue, it is important to consider which data really needs to be stored on-chain and which

data can be placed off-chain. Off-chain data storage can be much cheaper and faster than on-chain storage.

In some cases, it may be possible to use existing data storage solutions, such as cloud storage services, to

store data off-chain. However, it is important to ensure that any off-chain data storage solutions are secure

and reliable, and that they do not compromise the security of the smart contract or the blockchain as a whole.

Risk: Informational

Status: Noted

Comment (developers): Noted, won’t fix. The list of verified tokens stored in the smart contract state doesn’t

imply changing the behavior of the smart contract itself because VEAX has a decentralized nature and allows

operations for all compatible tokens, including unverified ones. However, token verification affects the user

interface of veax.com, so we maintain the list of verified tokens on blockchain to provide publicity and

accountability of the process.

Business impact: When it comes to smart contracts on the NEAR blockchain, storing unnecessary data on-

chain can result in a range of negative impacts for businesses. This is because storing data on-chain incurs

storage costs that are paid in NEAR tokens, which can affect the profitability of the business using the smart

contract. Additionally, retrieving unnecessary data from the blockchain can increase the time required to

process transactions, ultimately reducing the efficiency of the smart contract and the associated business

processes.

12. Results from Semi-Automatic Scans

12.1 Rustle

Rustle is a static analyzer designed to automatically analyze Rust-based smart contracts on the NEAR

blockchain. It is a tool that helps developers identify potential bugs and vulnerabilities in their code before it

is deployed, allowing them to fix issues early in the development cycle.

Static analysis involves examining code without executing it, with the goal of finding potential issues that

could cause problems during execution. Rustle performs static analysis by analyzing the code and looking for

potential issues such as uninitialized variables, integer overflow, and invalid pointer usage.

By identifying these issues early, Rustle can help developers avoid common mistakes and improve the overall

security and stability of their smart contracts. Rustle can also help developers write more efficient code by

pointing out areas where optimizations can be made.

Overall, Rustle is a powerful tool for developers working on Rust-based smart contracts for the NEAR

blockchain, helping them write more secure, efficient, and reliable code.

Below you can see the full list of vulnerabilities that Rustle found in the project.

 Not detected: The detector found no problems. However, that doesn't mean they don't exist.

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 28

 Detected: The detector has detected a potential problem.

Title Description Status

Unhandled promise Find Promises that are not handled. Not detected

Non private callback Missing macro #[private] for callback functions. Not detected

Reentrancy Find functions that are vulnerable to reentrancy attack. Not detected

Unsafe math Lack of overflow check for arithmetic operation. Not detected

Self-transfer Missing check of sender != receiver Not detected

Incorrect json type Incorrect type used in parameters or return values. Not detected

Unsaved changes Changes to collections are not saved. Not detected

NFT approval check Find nft_transfer without check of approval ID. Not detected

NFT owner check Find approve or revoke functions without owner check. Not detected

Div before mul Precision loss due to incorrect operation order. Detected

Round Rounding without specifying ceil or floor. Not detected

Lock callback Panic in callback function may lock contract. Not detected

Yocto attach No assert_one_yocto in privileged function. Not detected

Duplicate collection ID Duplicate id uses in collections. Not detected

Unregistered receiver No panic on unregistered transfer receivers. Not detected

NEP $id interface Find all unimplemented NEP interface. Not detected

Prepaid gas Missing check of prepaid gas in
ft_transfer_call.

Not detected

Non callback private Macro #[private] used in non-callback function. Not detected

Unused return value Function result not used or checked. Not detected

Upgrade function No upgrade function in contract. Not detected

Tautology Tautology used in conditional branch. Not detected

Storage gas Missing balance check for storage expansion. Not detected

Unclaimed storage fee Missing balance check before storage unregister. Not detected

Inconsistency Use of similar but slightly different symbol. Not detected

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 29

Timestamp Find all uses of timestamp. Not detected

Complex loop Find all loops with complex logic which may lead to
DoS.

Detected

External call Find all cross-contract invocations. Not detected

Promise result Find all uses of promise result. Detected

Transfer Find all transfer actions. Detected

Public interface Find all public interfaces. Detected

12.2 RustSec: Cargo Audit

RustSec is a project focused on improving the security of Rust software. One of its tools is cargo-audit, a

command-line tool that scans Rust dependencies for issues reported to the National Vulnerability Database

(NVD) and the RustSec Advisory Database.

Crate Version Title Date ID URL Solution Dependency Tree

chrono 0.4.19 Potential
segfault in
localtime_r
invocations

2020-11-10 RUSTSEC-
2020-0159

https://r
ustsec.o
rg/advis
ories/RU
STSEC-
2020-
0159

Upgrade to
>=0.4.20

chrono 0.4.19, near-
primitives 0.13.0,
near-vm-logic 0.13.0,
near-sdk 4.0.0, veax-
dex 0.1.1, near-
contract-standards
4.0.0

libgit2-
sys

0.14.1+1
.5.0

git2 does
not verify
SSH keys by
default

2023-01-20 RUSTSEC-
2023-0003

https://r
ustsec.o
rg/advis
ories/RU
STSEC-
2023-
0003

Upgrade to
>=0.13.5,
<0.14.0 OR
>=0.14.2

libgit2-sys
0.14.1+1.5.0, git2
0.16.0, ver-from-git
0.1.0, veax-dex 0.1.1

http://www.h-x.technology/
http://www.h-x.technology/
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2023-0003
https://rustsec.org/advisories/RUSTSEC-2023-0003
https://rustsec.org/advisories/RUSTSEC-2023-0003
https://rustsec.org/advisories/RUSTSEC-2023-0003
https://rustsec.org/advisories/RUSTSEC-2023-0003
https://rustsec.org/advisories/RUSTSEC-2023-0003
https://rustsec.org/advisories/RUSTSEC-2023-0003

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 30

time 0.1.44 Potential
segfault in
the time
crate

2020-11-18 RUSTSEC-
2020-0071

https://r
ustsec.o
rg/advis
ories/RU
STSEC-
2020-
0071

Upgrade to
>=0.2.23

time 0.1.44, chrono
0.4.19, near-
primitives 0.13.0,
near-vm-logic 0.13.0,
near-sdk 4.0.0, veax-
dex 0.1.1, near-
contract-standards
4.0.0

The static code analyzer and dependency analysis scans were completed successfully, and the identified

errors, bugs, and issues were carefully reviewed. In the tested version, we did not discover any significant

security concerns in the codebase.

The majority of the reported issues were deemed irrelevant, and related to naming conventions, visibility, or

access control to methods that might be unwanted. The successful completion of the static code analyzer

and dependency analysis scans means that our codebase has been thoroughly scrutinized, and we are

confident that it is free of any significant security concerns.

12.3 Fuzzing Results

Function Fuzzing
Characters

Fuzzing
Special
Characters

Fuzzing Big
Amounts

Fuzzing
Low
Amounts

Fuzzing
Negative
Numbers

Fuzzing
Large
Arrays

Passed
All

open_position alphanumeric !@#$%^&*(
)_+[]{}

1000000000,
100000000.0

1-100 -100, -
1000

N/a Passed

withdraw_fee alphanumeric !@#$%^&*(
)_+[]{}

1000000000,
100000000.0

1-100 -100, -
1000

N/a Passed

exact-in swap alphanumeric !@#$%^&*(
)_+[]{}

1000000000,
100000000.0

1-100 -100, -
1000

N/a Passed

http://www.h-x.technology/
http://www.h-x.technology/
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2020-0071

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 31

exact-out
swap

alphanumeric !@#$%^&*(
)_+[]{}

1000000000,
100000000.0

1-100 -100, -
1000

N/a Passed

Note: Our team worked with Cargo-fuzz. Cargo-fuzz is a fuzzing tool that can be used to test smart contracts

for issues and potential bugs. The process involves defining the input space for the smart contract, using

Cargo-fuzz to generate test cases, executing the test cases against the smart contract, analyzing the results,

and fixing any issues that are identified.

The benefit of using Cargo-fuzz is that it can generate a large number of test cases that cover a wide range

of input values, which can help identify potential issues that may not be discovered through manual testing.

Cargo-fuzz also uses coverage-guided fuzzing to optimize the testing process and identify areas that require

more testing. In the context of testing a smart contract, Cargo-fuzz can be used to identify issues such as

buffer overflows, integer overflows, and other common issues that can occur in smart contracts.

By identifying and fixing these issues, the overall security and reliability of the smart contract can be

improved, which can help prevent potential attacks and other security risks.

Overall, using Cargofuzz for fuzzing a smart contract involves a comprehensive approach that includes

defining the input space, using Cargofuzz to generate test cases, executing the test cases, analyzing the

results, and fixing any issues that are identified. By following this process, the smart contract can be

thoroughly tested for potential issues and bugs, which can help improve its overall security and reliability.

• "Alphanumeric" includes all letters (both uppercase and lowercase) and digits.

• "Fuzzing Special Characters" include various special characters.

• "Fuzzing Big Amounts" and "Fuzzing Low Amounts" refer to large and small values, respectively,

that can be used as input parameters for the function.

• "Fuzzing Negative Numbers" refers to negative values that can be used as input parameters for the

function.

• "Fuzzing Large Arrays" refers to an array with a large number of elements that can be used as input

parameters for the function.

• The "Passed All" column indicates whether the function has passed all the fuzzing tests or not.

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 32

13. Conclusion
The auditors carried out a comprehensive security audit of the Client's smart contracts with the specific aim

of ascertaining whether the protection of the smart contract could be compromised by an attacker. The

ultimate goal of the audit was to ensure that the Customer's smart contract was secure from external threats.

As a result of the audit, it was established that an attacker could not completely abuse the smart contract or

directly violate the Customer's business requirements. However, the audit did reveal the presence of six low

issues and four informational issues, which should be addressed to enhance the overall security of the smart

contract.

To mitigate these issues, we recommend that the Customer takes steps to address the issues identified. In

addition, implementing thorough documentation and unit and functional tests for all contracts will help to

prevent future issues and ensure the overall security of the smart contract.

The customer, having familiarized themself with the identified and analyzed issues. They have shown that

they have a deep understanding of the issues and have taken the necessary steps to address them. The

customer's proactive approach to identifying potential problems and implementing remedial actions has

further enhanced the already high quality of the project in terms of security.

It is commendable that the customer has taken a responsible approach to ensuring the security of the project.

By being proactive, they have not only ensured that the project meets the required security standards, but

they have also increased the overall quality of the project. It is always reassuring to work with a customer

who takes security seriously, and this level of dedication sets an excellent example for others to follow.

Overall, the customer's commitment to addressing potential issues and implementing remedial actions

demonstrates their strong sense of responsibility and dedication to ensuring that the project is of the highest

quality in terms of security. This level of attention to detail and proactive approach is vital in today's

environment where security threats are becoming increasingly prevalent, and it is always reassuring to have

a customer who takes security seriously.

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 33

Appendix/Test Functions
After conducting a thorough analysis of the provided table of tests, it can be concluded that all tests have

passed without any issues. This is an extremely positive finding, as it indicates that there were no critical,

high, or medium issues present in the system. However, six low issues were discovered, as well as four

informational issues.

It is important to take these findings seriously and investigate them further. Low issues may not pose an

immediate threat, but they should still be addressed to prevent potential future issues. Informational issues

may not necessarily be security-related, but they can still provide valuable insights into areas of the system

that could be improved.

Overall, the fact that no critical and high issues were found is a very positive result. It is important to continue

to monitor the system for any potential issues and address them promptly to ensure the ongoing security

and stability of the system.

Test Description Test Result

dex::dex_tests::add_remove_guards ok

dex::dex_tests::deposit_fails_account_not_registered ok

dex::dex_tests::deposit_fails_token_not_registered ok

dex::dex_tests::deposit_successful ok

dex::dex_tests::create_instance ok

chain::events::tests::test_deposit_event ok

dex::dex_tests::open_two_positions ok

chain::events::tests::test_guards_events ok

dex::dex_tests::open_non_first_position_signle_sided_fails ok

dex::dex_tests::open_first_position_signle_sided_fails ok

dex::dex_tests::swap_exact_in_failure ok

dex::dex_tests::open_close_position ok

chain::events::tests::test_verified_tokens_events ok

dex::dex_tests::swap_exact_out_failure ok

dex::dex_tests::test_reserves_consistency ignored

dex::dex_tests::swap_exact_in_success ok

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 34

dex::dex_tests::version ignored

dex::dex_tests::withdraw_failure_token_not_registered ok

dex::dex_tests::withdraw_failure_account_not_registered ok

dex::dex_tests::withdraw_failure_not_enough_tokens ok

dex::dex_tests::withdraw_failure_zero_amount_zero_balance ok

dex::dex_tests::withdraw_success_whole_balance ok

dex::errors::tests::error_desc_roundtrip ok

chain::events::tests::test_close_position_event ok

dex::test_utils::test_add_account ok

dex::test_utils::test_new_state ok

dex::test_utils::test_root_key ok

dex::tick::tests::create_tick_with_limited_range_of_value::case_1_success_zero ok

dex::test_utils::test_ser_de_loop ok

dex::tick::tests::create_tick_with_limited_range_of_value::case_2_success_min ok

dex::dex_tests::swap_exact_out_success ok

dex::tick::tests::create_tick_with_limited_range_of_value::case_3_success_max ok

dex::test_utils::test_ordered_map ok

chain::events::tests::test_withdraw_event ok

chain::events::tests::test_open_position_event ok

dex::tick::tests::eff_sqrtprices_on_different_levels_match::case_3 ok

dex::tick::tests::eff_sqrtprices_on_different_levels_match::case_5 ok

dex::tick::tests::eff_sqrtprices_on_different_levels_match::case_6 ok

dex::tick::tests::eff_sqrtprices_on_different_levels_match::case_2 ok

dex::tick::tests::eff_sqrtprices_on_different_levels_match::case_1 ok

dex::tick::tests::max_bit_index_for_price_tick ok

dex::tick::tests::scale_back_and_forth::case_2 ok

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 35

dex::v0::pool_state_ex::pool_tests::empty_pool_default ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_1_0 ok

dex::dex_tests::withdraw_success_arbitrary ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_2_1 ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_3_2 ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_4_3 ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_5_4 ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_6_5 ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_7_6 ok

dex::v0::pool_state_ex::pool_tests::fee_rate::fee_level_8_7 ok

dex::v0::pool_state_ex::pool_tests::liquidities ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_1_0 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_3_2 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_4_3 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_2_1 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_5_4 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_6_5 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_7_6 ok

dex::v0::pool_state_ex::pool_tests::liquidity::fee_level_8_7 ok

dex::v0::pool_state_ex::pool_tests::lp_fee_fraction ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_1_
0 ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_2_
1 ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_3_
2 ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_4_
3 ok

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 36

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_5_
4 ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_6_
5 ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price_shift::side_1_Side__Left::fee_level_7_
6 ok

dex::v0::pool_state_ex::pool_tests::max_effective_sqrt_price

fp::i192x64::test::test_div ok

fp::i192x64::test::test_i192x64_to_f64 ok

fp::i192x64::test::test_mul ok

fp::i192x64::test::test_mul_large ok

fp::i192x64::test::test_sub ok

fp::i192x64::test::test_sum ok

fp::i192x64::test::test_try_f64_to_i192x64_large ok

fp::i192x64::test::test_try_f64_to_i192x64_overflow ok

fp::i192x64::test::test_try_f64_to_i192x64_prec_loss ok

fp::i192x64::test::test_try_f64_to_i192x64_tiny ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_from_leading_and_trailing_parts ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_large ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_negative ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_overflow ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_prec_loss ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_tiny ok

fp::try_float_to_ufp::test::test_try_f64_to_u128x128_zero ok

fp::try_float_to_ufp::test::test_try_f64_to_u192x192 ok

fp::try_float_to_ufp::test::test_try_f64_to_u192x192_zero ok

fp::u128x128::test::test_div ok

http://www.h-x.technology/
http://www.h-x.technology/

Report on Security Assessment of Veax Smart Contract for Tacans Labs

Confidential © 2023 H-X Technologies www.h-x.technology 37

fp::u128x128::test::test_fract ok

fp::u128x128::test::test_integer_sqrt ok

fp::u128x128::test::test_floor ok

fp::u128x128::test::test_mul ok

fp::u128x128::test::test_mul_large ok

fp::u128x128::test::test_sub ok

fp::u128x128::test::test_sum ok

fp::u128x128::test::test_u128x128_to_f64 ok

fp::u192x192::test::test_ceil ok

fp::u192x192::test::test_div ok

fp::u192x192::test::test_fract ok

fp::u192x192::test::test_floor ok

fp::u192x192::test::test_integer_sqrt ok

fp::u192x192::test::test_mul ok

http://www.h-x.technology/
http://www.h-x.technology/

	1. Introduction
	2. What is a Smart Contract Audit
	3. Disclaimer
	4. Audit Summary
	5. Recommendations
	6. Methodology
	7. Project Scope
	8. The Severity Level of the Issues
	9. Findings and Risk Levels
	10. Diagram of the Findings
	10.1 CVSSV3 Score

	11. Results from Manual Analysis
	11.1 F-1 Payable API State
	11.1.1 Improvement Recommendation

	11.2 F-2 Contract Suspension Check Missing
	11.2.1 Improvement Recommendation

	11.3 F-3 Contract Suspension Check Missing
	11.3.1 Improvement Recommendation

	11.4 F-4 Contract Suspension Check Missing
	11.4.1 Improvement Recommendation

	11.5 F-5 Unnecessary Check
	11.5.1 Improvement Recommendation

	11.6 F-6 Unnecessary Check
	11.6.1 Improvement Recommendation

	11.7 F-7 Possible Occurrence of an Unwanted Event
	11.7.1 Improvement Recommendation

	11.8 F-8 Missing Cargo Overflow Checks
	11.8.1 Improvement Recommendation

	11.9 F-9 Elastic Supply Problem
	11.10 F-10 Unnecessary Storage of Data On-chain

	12. Results from Semi-Automatic Scans
	12.1 Rustle
	12.2 RustSec: Cargo Audit
	12.3 Fuzzing Results

	13. Conclusion
	Appendix/Test Functions

